The components required for amino acid neurotransmitter signaling are present in adipose tissues.

نویسندگان

  • Anne Nicolaysen
  • Runhild Gammelsaeter
  • Jon Storm-Mathisen
  • Vidar Gundersen
  • Per Ole Iversen
چکیده

The adipocyte does not only serve as fuel storage but produces and secretes compounds with modulating effects on food intake and energy homeostasis. Although there is firm evidence for a centrally mediated regulation of adipocyte function via the autonomous nervous system, little is known about signaling between adipocytes. Amino acid neurotransmitters are candidates for such paracrine signaling. Here, we applied immunohistochemistry to detect components required for amino acid transmitter signaling in rat fat depots. In interscapular brown adipose tissue as well as in interscapular, mesenteric, perirenal, and epididymal white adipose tissues, we demonstrate robust immunosignals for the excitatory neurotransmitter glutamate, the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), and the GABA-synthesizing enzyme glutamate decarboxylase (GAD) isoforms GAD65 and GAD67. Moreover, all adipose tissues stained for the vesicular glutamate transporter VGLUT1 and the vesicular GABA transporter VGAT in addition to the vesicle marker synaptophysin. Electron microscopic immunocytochemistry showed that VGLUT1 and VGAT, but not VGLUT2 or VGLUT3, are localized in vesicular organelles in adipocytes. The receptors for glutamate (subunits GluR2/3 and NR1 but not mGluR2) and for GABA (GABA(A)Ralpha2) were present in the adipocytes. The presence of glutamate, GABA, their vesicular transporters, and their receptors indicates a paracrine signaling role for amino acids in adipose tissues.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Curcumin on the Hypothalamus Levels of the Potent Inhibitory Neurotransmitter ,Gamma aminobutyric acid

Background: There are some reports in the literature showing that hypothalamus synthesizes and secretes amino acid neurotransmitters. According to several studies, elevated serum levels of gamma-amino butyric acid (GABA), a potent inhibitory neurotransmitter, have recently been implicated in the pathogenesis of neural diseases. The purpose of this research was to estimate the effects of curcumi...

متن کامل

The Association of Omentin Gene Expression in Visceral and Subcutaneous Adipose Tissues with Plasma Fatty Acids Profile and Dietary Fatty Acids

Introduction: Omentin, an adipokine, with anti-inflammatory effects reduces insulin resistance, and can hence, play an important role in prevention of cardiovascular disease and diabetes. The present study aimed to investigate the association of plasma and dietary fatty acids with gene expression of omentin in visceral and subcutaneous adipose tissues. Materials and Methods: Visceral and subcut...

متن کامل

P28: The Effects of Omega-3 and 6 Fatty Acids on Hippocampus and Learning

One of the most nervous system evolution are memory and learning in humans. Learning is a skill that enhances synaptic activity in the hippocampus of prefrontal cortex. In fact, basic passive learning is communication between the conditioned and Unconditioned stimulation. Passive learning involves three steps: habit, education and remember. According to the results of investigations, the hippoc...

متن کامل

Cerebellar Giant Synaptosomes: a Model to Study Basal and Stimulated Release of [3H]gamma-Aminobutyric Acid

Background: Neurotransmitter release is an essential link in cell communication of the nervous system. Many investigations have focused on gamma amino butyric acid (GABA)-ergic neurotransmission, because it has been implicated in the pathophysiology of several central nervous system disorders. To bypass complications related to homo- and heterosynaptic modulation and to avoid indirect interpret...

متن کامل

Possible involvement of glutamatergic signaling machineries in pathophysiology of rheumatoid arthritis.

The prevailing view is that L-glutamate (Glu) functions as an excitatory amino acid neurotransmitter through a number of molecular machineries required for the neurocrine signaling at synapses in the brain. These include Glu receptors for signal input, Glu transporters for signal termination, and vesicular Glu transporters for signal output through exocytotic release. Although relatively little...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of lipid research

دوره 48 10  شماره 

صفحات  -

تاریخ انتشار 2007